ภาษาอาหรับ ภาษาเขมร ภาษาจีน ภาษาอังกฤษ ภาษาอินโดนีเซีย ภาษาลาว ภาษามลายู(ยาวี) ภาษามาเลเซีย ภาษาตากาล็อก ภาษาเวียดนาม ภาษาจีนเป็นไทย


คณิตศาสตร์เรื่อง เซต


เซต (Sets) หมายถึง กลุ่มสิ่งของต่างๆ ไม่ว่าจะเป็น คน สัตว์ สิ่งของ หรือนิพจน์ทางคณิตศาสตร์ ซึ่งสามารถระบุสมาชิกในกลุ่มได้ และเรียก สมาชิกในกลุ่มว่า "สมาชิกของเซต" 

การเขียนเซต

การเขียนเซตนิยมใช้อักษรตัวใหญ่เขียนแทนชื่อเซต และสามารถเขียนได้ 2แบบ

1. แบบแจกแจงสมาชิกของเซต

ตัวอย่างเช่น  A = {1, 2, 3, 4, 5}

2. แบบบอกเงื่อนไขของสมาชิกในเซต

ตัวอย่างเช่น A = { x | x เป็นจำนวนเต็มบวกที่มีค่าน้อยกว่าหรือเท่ากับ 5}

เซตจำกัด

เซตจำกัด คือ เซตที่สามารถระบุจำนวนสมาชิกในเซตได้

ตัวอย่างเช่น  A = {1, 2, 3, 4, 5} มีสมาชิก 5 สมาชิก

เซตอนันต์

เซตอนันต์ คือ เซตที่ไม่ใช่เซตจำกัด หรือเซตที่มีจำนวนสมาชิกมากมายนับไม่ถ้วน

ตัวอย่างเช่่น C = {...,-2,-1,0,1,2,...}

เซตที่เท่ากัน

เซต A และเซต B จะเป็น เซตที่เท่ากัน ก็ต่อเมื่อ สมาชิกทุกตัวของเซต A เป็นสมาชิกของเซต B และสมาชิกทุกตัวของเซต B เป็นสมาชิกทุกตัวของเซต A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A= B


ตัวอย่างเช่น A = {1, 2, 3, 4, 5}

                 B = { x | x เป็นจำนวนนับที่มีค่าน้อยกว่าหรือเท่ากับ 5}

เซตว่าง

เซตว่าง คือ เซตที่ไม่มีสมาชิก หรือมีจำนวนสมาชิกในเซตเป็นศูนย์ สามารถเขียนแทนได้ด้วยสัญลักษณ์ {} หรือ Ø

ตัวอย่างเช่่น A = {x | x เป็นจำนวนเต็ม และ 1 < x < 2}

                B = { x | x เป็นจำนวนเต็มบวก และ x + 1 = 0 }

 เอกภพสัมพัทธ์

เอกภพสัมพัทธ์ คือ เซตที่ประกอบด้วยสมาชิกทั้งหมดของสิ่งที่เราต้องการจะศึกษา สามารถเขียนแทนได้ด้วยสัญลักษณ์ u

ตัวอย่างเช่่น  U = {...,-2,-1,0,1,2,...}

            หรือU = {x | x เป็นจำนวนเต็ม}

ยูเนียน (Union)

ยูเนียน (Union) มีนิยามว่า เซต A ยูเนียนกับเซต B คือเซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A หรือ เซต B หรือทั้ง A และ B สามารถเขียนแทนได้ด้วย สัญลักษณ์ A ∪ B

ตัวอย่างเช่น

A ={1,2,3}

B= {3,4,5}

∴ A ∪ B = {1,2,3,4,5}

อินเตอร์เซกชัน (Intersection)

อินเตอร์เซกชัน (Intersection) มีนิยามคือ เซต A อินเตอร์เซกชันเซต B คือ เซตซึ่งประกอบด้วยสมาชิกที่เป็นสมาชิกของเซต A และเซต B สามารถเขียนแทนได้ด้วยสัญลักษณ์ A ∩ B

ตัวอย่างเช่น

A ={1,2,3}

B = {3,4,5}

∴ A ∩ B = {3}

คอมพลีเมนต์ (Complements)

คอมพลีเมนต์ (Complements) มีนิยามคือ ถ้าเซต A ใดๆ ในเอกภพสัมพัทธ์ U แล้วคอมพลีเมนต์ของเซต A คือ เซตที่ประกอบด้วยสมาชิกที่เป็นสมาชิกของ U แต่ไม่เป็นสมาชิกของ A สามารถเขียนแทนได้ด้วยสัญลักษณ์ A’

ตัวอย่างเช่น

U = {1,2,3,4,5}

A ={1,2,3}

∴ A’ = {4,5}